

JAJ-P-3050

Seat No.

M. C. A. (Sem. III) (CBCS) Examination

November - 2019

P-3050: Operation Research

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 1 Attempt the following: 4 (a) What is LPP? (1)What is dual simplex? (2)(3)What is duality? **(4)** What is feasible solution? Attempt any one of the following: 2 (b) What is basic feasible solution? (1) (2)Define optimum basic feasible and unbounded solution. Attempt any one of the following: 3 (c) Explain the general mathematical model of LPP. (1)(2)Explain alternative and infeasible solution with suitable example. (d) Attempt any one of the following: 5 (1)Solve the following LPP using graphics method: maximize $z = 40x_1 + 80x_2$ stc $2x_1 + 3x_2 \le 48$, $x_1 \le 15$, $x_2 \le 10$ and $x_1, x_2 \ge 0$. (2)Solve the following LPP using graphics method: minimize $z = 600x_1 + 400x_2$ stc $3x_1 + 3x_2 > = 40, 3x_1 + x_2 > = 40, 2x_1 + 5x_2 > = 44$

 $x_1, x_2 > = 0$.

2	(a)	$Att\epsilon$	empt the following:	4
		(1)	Give the formula to find out the new replaced r	ow.
		(2)	What is the meaning while performing sensitive	vity
			analysis, the upper bound infinity on the va	lue
			of the right hand side of constrain?	
		(3)	The right hand side range is often referred to	as
			the range of	
		(4)	Define decision variable.	
	(b)	Atte	empt any one of the following:	2
		(1)	What is sensitivity analysis? Explain in brie	ef.
		(2)	Give the conditions of Big-M method	for
			maximization case.	
	(c)	Atte	empt any one of the following:	3
		(1)	Explain how can a change in resource availabi	lity
			affect a solution.	
		(2)	List the different cases in change in the inp	out-
			output coefficient. And any one in brief.	
	(d)	$Att\epsilon$	empt any one of the following:	5
		(1)	Explain change in the coefficient of a non-ba	asic
			variable with respect to sensitivity analysis.	
		(2)	Explain change in the coefficient of a basic varia	ıble
			with respect to sensitivity analysis.	
		A		
3	(a)		empt the following:	4
		(1)	Explain RIM condition.	
		(2)	What is degenerate solution?	
		(3)	What is non degenerate solution?	
		(4)	What is balanced problem?	
	(b)	Atte	empt any one of the following:	2
		(1)	List the characteristics of TP ?	
		(2)	Explain loop in TP.	
JAJ	J-P-30)50]	2	Contd

(c) Attempt any one of the following	(C)	iollowing	tne	$o_{\mathbf{I}}$	one	any	Attempt	(c)
---	-----	-----------	-----	------------------	-----	-----	---------	-----

(1) Solve the following using NWCM.

	D ₁	D_2	D_3	D_4	Supply
S_1	2	3	11	7	6
S_2	1	0	6	1	1
S_3	5	8	15	9	10
Demand	7	5	3	2	

(2) Solve the following using LCM.

	D_1	D_2	D_3	D_4	Supply
S ₁	2	3	11	7	6
S_2	1	0	6	1	1
S_3	5	8	15	9	10
Demand	7	5	3	2	

(d) Attempt any one of the following:

5

3

- (1) Explain general mathematical model for transportation problem.
- (2) Write a C/C++ program to find the initial solution using NWCM.

4 (a) Attempt the following:

4

- (1) Define enumeration method.
- (2) What is unbalanced assignment problem?
- (3) How Maximization assignment problem is transformed into a minimization case ?
- (4) In how many ways a sales man can visit n cities?
- (b) Attempt any one of the following:

2

- (1) List the different methods to solve the assignment problem.
- (2) Explain maximization case in assignment problem.

3

- (1) Explain optimality criterion in assignment problem.
- (2) Solve the following assignment problem using Hungarian method:

	1	2	3	
A	30	31	27	
В	28	29	26	
С	29	30	28	
D	28	31	27	
Е	31	29	26	

(d) Attempt any **one** of the following:

5

- (1) Explain the mathematical model for assignment problem.
- (2) Write a C/C++ program to solve the assignment problem.
- **5** (a) Attempt the following:

4

- (1) What is pert?
- (2) What is network?
- (3) Explain CP.
- (4) What is event?
- (b) Attempt any **one** of the following:

2

- (1) Explain burst event.
- (2) List different types of activities.
- (c) Attempt any **one** of the following:

3

- (1) List and explain different errors in network.
- (2) What is dummy in network? Explain its utility.
- (d) Attempt any one of the following:

5

- (1) Explain forward pass method to find the critical path.
- (2) Draw network diagram for the following:

Activity	A	В	C	D	E	F	G	Н	I	J
Predecessor	_	Δ	R	R	В	C	C	F,G	D,E,H	т
Activity	_	Λ	Б	Б	Б			1,0	D,L,11	1